| epochs | train_loss | eval_loss | | ------ | ---------- | --------- | | 50 | 4.377000 | 3.628506 | | 100 | 2.636800 | 2.558457 | | 150 | 2.428800 | 2.427239 | | 200 | 2.334800 | 2.193493 | | 250 | 2.188500 | 2.186310 | | 300 | 2.112400 | 2.173394 | | 350 | 2.122900 | 2.163947 | | 400 | 2.155400 | 2.162106 | | 450 | 2.072100 | 2.154830 | | 500 | 1.979900 | 2.165512 | | 550 | 1.935800 | 2.176313 | | 600 | 1.942800 | 2.170668 | | 650 | 1.968000 | 2.162810 | | 700 | 1.974100 | 2.167501 | | 750 | 1.801900 | 2.235841 | | 800 | 1.768000 | 2.233753 | | 850 | 1.779100 | 2.218278 | | 900 | 1.828900 | 2.220891 | | 950 | 1.854900 | 2.208387 | | 1000 | 1.653600 | 2.302763 | | 1050 | 1.663500 | 2.307982 | | 1100 | 1.673400 | 2.301423 | | 1150 | 1.608400 | 2.320958 | | 1200 | 1.683500 | 2.303580 | | 1250 | 1.532100 | 2.434277 | | 1300 | 1.558900 | 2.418276 | | 1350 | 1.508900 | 2.422347 | | 1400 | 1.535100 | 2.416650 | | 1450 | 1.529900 | 2.415497 |