Files
masterthesis-playground/bertopic/bertopic_autotune.py
2025-10-20 23:06:52 +02:00

161 lines
5.3 KiB
Python

import json
import traceback
import numpy as np
import pandas as pd
from hdbscan import HDBSCAN
from sentence_transformers import SentenceTransformer
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.metrics import pairwise_distances
from sklearn.metrics.pairwise import cosine_similarity
from sklearn.model_selection import ParameterGrid
from umap import UMAP
from bertopic import BERTopic
from bertopic.representation import KeyBERTInspired
from bertopic.vectorizers import ClassTfidfTransformer
param_grid = {
"nr_topics": [45, 50, 55],
"min_topic_size": [30, 40, 50],
"n_gram_max": [3],
"min_document_frequency": [1, 2],
"n_neighbors": [15],
"n_components": [2],
"min_dist": [0.1],
"top_n_words": [10],
}
def calculate_metrics(topic_model, embedder, top_n_words=5):
# Get topic words
topic_words = []
for topic_id in range(len(topic_model.get_topic_info()) - 1):
words = [word for word, _ in topic_model.get_topic(topic_id)]
topic_words.append(words[:top_n_words])
# Coherence
coherence_scores = []
for words in topic_words:
embeddings = embedder.encode(words)
sim_matrix = cosine_similarity(embeddings)
np.fill_diagonal(sim_matrix, 0)
coherence_scores.append(np.mean(sim_matrix))
overall_coherence = np.mean(coherence_scores)
# Diversity
all_topic_words = [word for topic in topic_words for word in topic]
diversity = len(set(all_topic_words)) / len(all_topic_words)
# Inter-topic distance
topic_embeddings = [
np.mean(embedder.encode(words), axis=0) for words in topic_words
]
topic_distance = pairwise_distances(topic_embeddings, metric="cosine")
avg_distance = np.mean(topic_distance[np.triu_indices_from(topic_distance, k=1)])
res = {
"coherence": float(str(overall_coherence)[:6]),
"diversity": float(str(diversity)[:6]),
"inter_topic_distance": float(str(avg_distance)[:6]),
"combined_score": float(
str(0.6 * overall_coherence + 0.2 * diversity + 0.2 * avg_distance)[:6]
),
}
print(res)
return res
def auto_tune_bertopic(texts, embedding_model, param_grid):
best_score = -1
best_params = None
best_model = None
history = []
print("Starting auto-tuning of BERTopic...")
print(f"Number of reviews: {len(texts)}")
print("Running embedding model...")
embedder = SentenceTransformer(embedding_model)
embeddings = embedder.encode(reviews, show_progress_bar=True)
# Convert param_grid to list for sampling
print("Generating parameter combinations...")
param_list = list(ParameterGrid(param_grid))
print(f"Total parameter combinations: {len(param_list)}")
for params in param_list:
try:
print(f"Testing params: {params}")
ctfidf_model = ClassTfidfTransformer(reduce_frequent_words=True)
vectorizer_model = CountVectorizer(
stop_words="english",
min_df=params["min_document_frequency"],
ngram_range=(1, params["n_gram_max"]),
)
representation_model = KeyBERTInspired()
umap_model = UMAP(
n_neighbors=params["n_neighbors"],
n_components=params["n_components"],
min_dist=params["min_dist"],
metric="cosine",
low_memory=True,
random_state=42,
)
hdbscan_model = HDBSCAN(
min_cluster_size=params["min_topic_size"],
metric="euclidean",
cluster_selection_method="eom",
gen_min_span_tree=True,
prediction_data=True,
)
model = BERTopic(
embedding_model=embedding_model,
ctfidf_model=ctfidf_model,
vectorizer_model=vectorizer_model,
umap_model=umap_model,
hdbscan_model=hdbscan_model,
representation_model=representation_model,
verbose=True,
calculate_probabilities=True,
language="english",
top_n_words=params["top_n_words"],
nr_topics=params["nr_topics"],
)
topics, _ = model.fit_transform(texts, embeddings)
metrics = calculate_metrics(model, embedder)
history.append({"params": params, "metrics": metrics})
with open("history.json", "w") as f:
json.dump(history, f, indent=2)
if metrics["combined_score"] > best_score:
best_score = metrics["combined_score"]
best_params = params
best_model = model
except Exception as e:
print(f"Failed with params {params}: {str(e)}")
traceback.print_exc()
continue
return best_model, best_params, best_score, history
SPECIAL_CHARS = ["\n", "\\n"]
MIN_REVIEW_WORDS = 5
reviews = pd.read_csv("data.tab", sep="\t").review.to_list()
for schar in SPECIAL_CHARS:
reviews = [
review.replace(schar, " ") if isinstance(review, str) else review
for review in reviews
]
reviews = [review for review in reviews if len(str(review).split()) >= MIN_REVIEW_WORDS]
print(auto_tune_bertopic(reviews, "all-MiniLM-L6-v2", param_grid))